http://stackoverflow.com/questions/620604/difference-between-a-pointer-and-reference-parameter

http://stackoverflow.com/questions/57483/what-are-the-differences-between-a-pointer-variable-and-a-reference-variable-in

http://stackoverflow.com/questions/334856/are-there-benefits-of-passing-by-pointer-over-passing-by-reference-in-c/334944

http://stackoverflow.com/questions/114180/pointer-vs-reference

from pyspark import SparkConf, SparkContext
from pyspark.sql import SQLContext
from operator import add
import sys

# based on
# SELECT SUM(salary)
# FROM employees
# WHERE salary > 1000
# GROUP by deptname

## Constants

APP_NAME = " sql test"

##OTHER FUNCTIONS/CLASSES

## Main functionality

def main(sc,filename):
    sqlContext = SQLContext(sc)
    datCtx = sqlContext.read.json(filename)
    datCtx.registerTempTable("datTbl")
    res = sqlContext.sql("SELECT department, SUM(salary) FROM datTbl
WHERE salary > 1 GROUP by department")
    res.show()

if __name__ == "__main__":
    # Configure Spark
    conf = SparkConf().setAppName(APP_NAME)
    conf = conf.setMaster("local[*]")
    sc   = SparkContext(conf=conf)
    filename = sys.argv[1]
    # Execute Main functionality
    main(sc, filename)

http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame

spark OUTPUT?

# simple
sqlContext = SQLContext(sc)
datCtx = sqlContext.read.json(filename)
datCtx.collect()
# simple stats
sqlContext = SQLContext(sc)
datCtx = sqlContext.read.json(filename)
datCtx.describe()

>>> df.describe().show()
+-------+------------------+
|summary|               age|
+-------+------------------+
|  count|                 2|
|   mean|               3.5|
| stddev|2.1213203435596424|
|    min|                 2|
|    max|                 5|
+-------+------------------+
>>> df.describe(['age', 'name']).show()
+-------+------------------+-----+
|summary|               age| name|
+-------+------------------+-----+
|  count|                 2|    2|
|   mean|               3.5| null|
| stddev|2.1213203435596424| null|
|    min|                 2|Alice|
|    max|                 5|  Bob|
+-------+------------------+-----+

https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/dean/dean_html/index.html

get virtualbox on mac. get full networking up on vboxes. hdfs on vboxes.

https://en.wikipedia.org/wiki/Positive-definite_matrix https://en.wikipedia.org/wiki/Symmetric_matrix

import numpy as np

# https://en.wikipedia.org/wiki/Positive-definite_matrix

# symmetric matrix: a square matrix that is equal to its transpose.
# Formally, matrix A is symmetric if A = A^T

# Positive-definite matrix: a symmetric n × n real matrix M is said to be
# positive definite if the scalar z^T M z is positive for every non-zero
# column vector z of n real numbers.


id2x2 = np.matrix([[1., 0.],
                   [0., 1.]])

m = np.matrix([[2., -1., 0.]
               [-1., 2., -1.],
               [0., -1., 2.]])

http://www.tutorialspoint.com/hadoop/hadoop_multi_node_cluster.htm http://www.allprogrammingtutorials.com/tutorials/setting-up-hadoop-2-6-0-cluster.php

http://mesos.apache.org/

https://databricks.com/blog/2014/01/21/spark-and-hadoop.html

– foreach RDD https://spark.apache.org/docs/0.9.1/streaming-programming-guide.html#output-operations – foreach RDD (new) http://spark.apache.org/docs/latest/streaming-programming-guide.html#output-operations-on-dstreams

– it SEEMS possible to use python libs https://blog.cloudera.com/blog/2015/09/how-to-prepare-your-apache-hadoop-cluster-for-pyspark-jobs/

learn how python uses packages from pip. learn how pip interacts with python.

http://www.howtogeek.com/197934/how-to-change-your-hostname-computer-name-on-ubuntu-linux/

Covariance gives you the interaction (or unscaled correlation) between different dimensions of data. i.e it will tell you if x is increasing, will y increase or decrease or remain unchanged.

https://www.quora.com/Principal-Component-Analysis-What-is-the-intuitive-meaning-of-a-covariance-matrix

https://www.quora.com/What-maths-do-I-need-to-learn-the-proof-that-all-functions-can-be-written-as-a-sum-of-sinusoids